PDS_VERSION_ID = PDS3 /* Identification Information */ NOT_APPLICABLE_CONSTANT = -9998 DATA_SET_ID = "MRO-M-HIRISE-3-RDR-V1.1" DATA_SET_NAME = "MRO MARS HIGH RESOLUTION IMAGING SCIENCE EXPERIMENT RDR V1.1" PRODUCER_INSTITUTION_NAME = "UNIVERSITY OF ARIZONA" PRODUCER_ID = "UA" PRODUCER_FULL_NAME = "ALFRED MCEWEN" OBSERVATION_ID = "PSP_001655_1370" PRODUCT_ID = "PSP_001655_1370_RED" PRODUCT_VERSION_ID = "2.0" INSTRUMENT_HOST_NAME = "MARS RECONNAISSANCE ORBITER" INSTRUMENT_HOST_ID = "MRO" INSTRUMENT_NAME = "HIGH RESOLUTION IMAGING SCIENCE EXPERIMENT" INSTRUMENT_ID = "HIRISE" TARGET_NAME = "MARS" MISSION_PHASE_NAME = "PRIMARY SCIENCE PHASE" ORBIT_NUMBER = 1655 SOURCE_PRODUCT_ID = (PSP_001655_1370_RED0_0, PSP_001655_1370_RED0_1, PSP_001655_1370_RED1_0, PSP_001655_1370_RED1_1, PSP_001655_1370_RED2_0, PSP_001655_1370_RED2_1, PSP_001655_1370_RED3_0, PSP_001655_1370_RED3_1, PSP_001655_1370_RED4_0, PSP_001655_1370_RED4_1, PSP_001655_1370_RED5_0, PSP_001655_1370_RED5_1, PSP_001655_1370_RED6_0, PSP_001655_1370_RED6_1, PSP_001655_1370_RED7_0, PSP_001655_1370_RED7_1, PSP_001655_1370_RED8_0, PSP_001655_1370_RED8_1, PSP_001655_1370_RED9_0, PSP_001655_1370_RED9_1) RATIONALE_DESC = "Look for small-scale channels and dissected surface texture" SOFTWARE_NAME = "PDS_to_JP2 v3.15.5 (1.49 2008/07/12 04:09:51)" OBJECT = IMAGE_MAP_PROJECTION ^DATA_SET_MAP_PROJECTION = "DSMAP.CAT" MAP_PROJECTION_TYPE = "EQUIRECTANGULAR" PROJECTION_LATITUDE_TYPE = PLANETOCENTRIC /* NOTE: The EQUIRECTANGULAR projection is based on the formula */ /* for a sphere. To eliminate confusion in the */ /* IMAGE_MAP_PROJECTION object we have set all three radii, */ /* A_AXIS_RADIUS, B_AXIS_RADIUS, and C_AXIS_RADIUS to the same */ /* number. The value recorded in the three radii is the local */ /* radius at the CENTER_LATITUDE on the Mars ellipsoid. That is, */ /* equatorial radius of 3396.190000 km and polar radius of */ /* 3376.200000 kilometers. Using the local radius of the */ /* ellipsoid implies that the MAP_SCALE and MAP_RESOLUTION are */ /* true at the CENTER_LATITUDE. */ A_AXIS_RADIUS = 3387.887658234 B_AXIS_RADIUS = 3387.887658234 C_AXIS_RADIUS = 3387.887658234 COORDINATE_SYSTEM_NAME = PLANETOCENTRIC POSITIVE_LONGITUDE_DIRECTION = EAST KEYWORD_LATITUDE_TYPE = PLANETOCENTRIC /* NOTE: CENTER_LATITUDE and CENTER_LONGITUDE describe the location */ /* of the center of projection, which is not necessarily equal to the */ /* location of the center point of the image. */ CENTER_LATITUDE = -40.000 CENTER_LONGITUDE = 180.000 LINE_FIRST_PIXEL = 1 LINE_LAST_PIXEL = 27877 SAMPLE_FIRST_PIXEL = 1 SAMPLE_LAST_PIXEL = 13530 MAP_PROJECTION_ROTATION = 0.0 MAP_RESOLUTION = 118259.58864773 MAP_SCALE = 0.5 MAXIMUM_LATITUDE = -42.742475209732 MINIMUM_LATITUDE = -42.978201358163 LINE_PROJECTION_OFFSET = -5054706.5 SAMPLE_PROJECTION_OFFSET = -7884570.5 EASTERNMOST_LONGITUDE = 267.18311189197 WESTERNMOST_LONGITUDE = 267.03376305076 END_OBJECT = IMAGE_MAP_PROJECTION /* All xxx_COUNT values are for the MRO spacecraft clock (SCLK) */ /* in seconds:subseconds form. A subsecond tick = 15.2588 microseconds. */ /* All xxx_TIME values are referenced to UTC. */ GROUP = TIME_PARAMETERS /* Time when the observation first started */ MRO:OBSERVATION_START_TIME = 2006-12-03T09:46:52.776 /* Time of the first image line */ START_TIME = 2006-12-03T09:46:52.907 SPACECRAFT_CLOCK_START_COUNT = "849606431:49646" /* Time of the last image line */ STOP_TIME = 2006-12-03T09:46:57.134 SPACECRAFT_CLOCK_STOP_COUNT = "849606435:64472" /* Time when this RDR product was created */ PRODUCT_CREATION_TIME = 2009-09-25T17:09:28 END_GROUP = TIME_PARAMETERS GROUP = INSTRUMENT_SETTING_PARAMETERS MRO:CCD_FLAG = (ON, ON, ON, ON, ON, ON, ON, ON, ON, ON, ON, ON, ON, ON) MRO:BINNING = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -9998, -9998, -9998, -9998) MRO:TDI = (128, 128, 128, 128, 128, 128, 128, 128, 128, 128, -9998, -9998, -9998, -9998) MRO:SPECIAL_PROCESSING_FLAG = (NOMINAL, NOMINAL, NOMINAL, NOMINAL, NOMINAL, NOMINAL, NOMINAL, NOMINAL, NOMINAL, NOMINAL, "NULL", "NULL", "NULL", "NULL") END_GROUP = INSTRUMENT_SETTING_PARAMETERS GROUP = VIEWING_PARAMETERS INCIDENCE_ANGLE = 76.697308 EMISSION_ANGLE = 0.287192 PHASE_ANGLE = 76.860248 LOCAL_TIME = 15.73091 SOLAR_LONGITUDE = 144.646598 SUB_SOLAR_AZIMUTH = 213.213720 NORTH_AZIMUTH = 270.000000 END_GROUP = VIEWING_PARAMETERS /* The JPEG2000 image data file associated with this label. */ OBJECT = COMPRESSED_FILE FILE_NAME = "PSP_001655_1370_RED.JP2" RECORD_TYPE = UNDEFINED ENCODING_TYPE = "JP2" ENCODING_TYPE_VERSION_NAME = "ISO/IEC15444-1:2004" INTERCHANGE_FORMAT = BINARY /* The name of the original source file. */ UNCOMPRESSED_FILE_NAME = "PSP_001655_1370_RED.IMG" /* The amount of original image data. */ REQUIRED_STORAGE_BYTES = 754351620 ^DESCRIPTION = "JP2INFO.TXT" END_OBJECT = COMPRESSED_FILE /* The source image data definition. */ OBJECT = UNCOMPRESSED_FILE FILE_NAME = "PSP_001655_1370_RED.IMG" RECORD_TYPE = FIXED_LENGTH RECORD_BYTES = 27060 FILE_RECORDS = 27877 ^IMAGE = "PSP_001655_1370_RED.IMG" OBJECT = IMAGE DESCRIPTION = "HiRISE projected and mosaicked product" LINES = 27877 LINE_SAMPLES = 13530 BANDS = 1 SAMPLE_TYPE = MSB_UNSIGNED_INTEGER SAMPLE_BITS = 16 SAMPLE_BIT_MASK = 2#0000001111111111# /* NOTE: The conversion from DN to I/F (intensity/flux) is: */ /* I/F = (DN * SCALING_FACTOR) + OFFSET */ /* I/F is defined as the ratio of the observed radiance and */ /* the radiance of a 100% lambertian reflector with the sun */ /* and camera orthogonal to the observing surface. */ SCALING_FACTOR = 4.64629240708861e-05 OFFSET = 0.023716286680705 BAND_STORAGE_TYPE = BAND_SEQUENTIAL CORE_NULL = 0 CORE_LOW_REPR_SATURATION = 1 CORE_LOW_INSTR_SATURATION = 2 CORE_HIGH_REPR_SATURATION = 1023 CORE_HIGH_INSTR_SATURATION = 1022 CENTER_FILTER_WAVELENGTH = 700 MRO:MINIMUM_STRETCH = 3 MRO:MAXIMUM_STRETCH = 1021 FILTER_NAME = "RED" END_OBJECT = IMAGE END_OBJECT = UNCOMPRESSED_FILE END